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a b s t r a c t

An extensive empirical literature finds that micro asset markets are segmented from
one another. We develop a consumption-based asset pricing model to quantify the
aggregate implications of a financial system comprised of many such segmented micro
asset markets. We specify exogenously the level of segmentation that determines how
much idiosyncratic risk traders bear in their micro market and calibrate the segmenta-
tion to match facts about systematic and idiosyncratic return volatility. In our bench-
mark model traders bear 30% of their idiosyncratic risk, the unconditional aggregate
equity premium is 2.4% annual, and the welfare costs of segmentation are substantial,
1.8% of lifetime consumption.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Do market-specific frictions matter for aggregate asset prices? An extensive empirical literature finds that micro asset
markets are segmented from one another, in the sense that ‘‘local factors’’, specific to the market under consideration, help
to explain asset prices in that particular market (Collin-Dufresne et al., 2001; Gabaix et al., 2007, for example). These
empirical segmentation patterns are commonly interpreted as evidence that contractual constraints, between financial
firms, their employees, and their outside investors, create what Shleifer and Vishny (1997) called limits to arbitrage. But
these analyses give no clear sense of whether such segmentation matters in the aggregate. To address this question, we
construct a consumption-based asset pricing model from a collection of segmented micro asset markets. Our approach is
deliberately macro: the model does not address particular features of any specific asset market, but can spell out precisely
the aggregate implications of the market segmentation frictions.

In our benchmark model, there are many durable risky assets. Each type of asset is traded in its own specialized market.
If these risky assets could be frictionlessly traded across markets, all idiosyncratic market-specific risk would be diversified
away and traders would be exposed only to aggregate risk. This full risk sharing is prevented by imposing, exogenously,
the following pattern of market-specific segmentation frictions: for each market m, an exogenous fraction lm of the
expense of purchasing assets in that market must be borne by traders specialized in that market. In return, these traders
receive lm of the benefit, i.e., of the dividends and resale price of assets sold in that market. In equilibrium, the parameter
lm determines the fraction of non-tradeable idiosyncratic risk in market m. When lm ¼ 0 all idiosyncratic risk can be traded
and traders are fully diversified. When lm ¼ 1 traders cannot trade away their idiosyncratic risk and instead simply
consume the dividends from the asset in their specific market.

Our setup is made tractable by following Lucas (1990) in assuming that investors can pool the tradeable idiosyncratic
risk within a large family. In equilibrium, the ‘‘state price’’ of a unit of consumption in each market m is a weighted average
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of the marginal utility of consumption in that market (with weight lm) and a term that reflects the cross-sectional average
marginal utility of consumption (with weight 1#lm). In the special case where lm ¼ 0 for all markets m, then the state
price of consumption is equal across markets and equal to the marginal utility of the aggregate endowment. This economy
thus collapses to the standard Lucas (1978) model where asset prices depend only on aggregate consumption risk. By
contrast, when lm40, asset prices also depend on the amount of idiosyncratic consumption risk ultimately borne
by traders. This idiosyncratic consumption risk is determined jointly by (i) the level and cross-sectional variation of
segmentation frictions lm, and (ii) the distribution of idiosyncratic volatilities across markets.

We start by calibrating a special case of the general model where lm ¼ l for all markets. The parameters governing the
aggregate endowment process and preferences are standard: independently and identically distributed (IID) lognormal
aggregate endowment growth, time- and state-separable expected utility preferences with constant relative risk aversion
g¼ 4. The parameters governing the distribution of individual endowments and the single l are used to simultaneously
match the systematic return volatility of a well-diversified market portfolio and key time-series properties of an individual
stock’s total return volatility (see Goyal and Santa-Clara, 2003; Bali et al., 2005). This procedure yields segmentation of
approximately l¼ 0:30. This model generates a sizeable unconditional equity premium, some 2.4% annual. However, as is
familiar from many asset pricing models with expected utility preferences and trend growth, the model has a risk-free rate
that is too high and too volatile.

This benchmark model is then extended by allowing for multiple types of market segmentation lm, which generates
cross-sectional differences in stock return volatilities. This motivates us to pick values for lm in order to match the
volatilities of portfolios sorted on measures of idiosyncratic volatility, as documented by Ang et al. (2006).

Our main finding is that aggregation matters: with cross-sectional variation in lm, the model needs an average amount
of segmentation of approximately l ¼ 0:10 to hit our targets, only one-third that of the single l model. Moreover, this
version of the model delivers essentially the same aggregate asset pricing implications as the single l benchmark despite
having only about one-third the average amount of segmentation. The characteristics of the micro markets in this
disaggregate economy are quite distinct: some 50% of the aggregate market by value has a lm of approximately zero, with
the amount of segmentation rising to a maximum of lm ¼ 0:37 for about 2% of the aggregate market by value. We also find
that dispersion in the amount of segmentation has significant implications. In particular, while the average amount of
segmentation is lower in the multiple lm model, the welfare costs of segmentation are actually larger than in the single l
model. The welfare cost of segmentation is a convex function of lm so that, other things equal, an increase in the dispersion
of segmentation increases the welfare cost. For the single l model (with no dispersion), the welfare costs of segmentation
are about 1.8% of lifetime consumption. By contrast, for the multiple lm model the welfare costs rise to about 3% of lifetime
consumption, even though the average amount of segmentation is only one-third that of the single l model.

To assist in interpreting our results, we compare our segmented markets model to an otherwise similar incomplete
markets model. Like a standard incomplete markets model, our segmented markets model features uninsured idiosyncratic
risk. This risk is priced in the segmented markets model, but it is not priced in the incomplete markets counterpart. As a
consequence, idiosyncratic risk leads to a significant aggregate risk premium in the segmented markets model but has no
such implications in the incomplete markets model.

1.1. Market frictions in the asset pricing literature

Traditionally, macroeconomists have taken the view that frictions in financial intermediation or other asset trades are
small enough to be neglected. In particular, early contributions, such as Lucas (1978) and Breeden (1979), characterize
equilibrium asset prices using frictionless models. The quantitative limitations of plausibly calibrated traditional asset
pricing models were highlighted by the ‘‘equity premium’’ and ‘‘risk-free rate’’ puzzles of Mehra and Prescott (1985) and
Weil (1989).

Since then an extensive literature has attempted to explicitly incorporate market frictions in an attempt to rationalize
these and related asset pricing puzzles.1 Models introducing market frictions have tended to follow one of two approaches.
One part of the financial economics literature followed deliberately micro-market approaches, focusing on the impact
of specific frictions in specific financial markets. This micro-markets approach is transparent and leads to precise
implications but does not lead to any clear sense of whether or why micro asset market frictions matter in the aggregate.
Moreover, these models are typically not well integrated with the standard consumption-based asset pricing framework.
Others have taken an unabashedly aggregate approach, with some financial friction faced by a representative intermediary
(see, e.g., Aiyagari and Gertler, 1999; Kyle and Xiong, 2001; Vayanos, 2005; He and Krishnamurthy, 2010a,b) or by
households (see, among others, Heaton and Lucas, 1996; Chien et al., 2011; Pavlova and Rigobon, 2008). The friction
‘‘stands in’’ for a diverse array of real-world micro frictions facing intermediaries and households. In these macro models,
financial intermediaries often bear disproportionate amounts of aggregate risk, but this implication is inconsistent with the
empirical literature on market segmentation, which emphasizes instead that intermediaries bear disproportionate
amounts of ‘‘local’’ or idiosyncratic risk.

1 See for example Aiyagari and Gertler (1991), He and Modest (1995) and Luttmer (1996, 1999) for the quantitative evaluation of asset pricing
models with trading frictions.

C. Edmond, P.-O. Weill / Journal of Monetary Economics 59 (2012) 319–335320



Author's personal copy

Our approach takes a middle course. Starting from a model that is consistent with intermediaries bearing too much
local risk, we work out the aggregation problem. With the aggregation problem solved, our stylized model of a collection of
micro-markets that together form a financial system can then be embedded into an otherwise standard asset-pricing
model. In a sense, our model can be viewed as a multiple market version of a limited participation model of asset prices
where agents are restricted in their ability to participate in asset trade. Important early contributions to this approach
include Mankiw and Zeldes (1991), Saito (1995) and Basak and Cuoco (1998). State of the art contributions to this
literature include Gomes and Michaelides (2008), Guvenen (2009) and Chien et al. (2011).

Section 2 presents the model and shows how to compute equilibrium asset prices. Section 3 calibrates a special case of
the model with a single type of market segmentation and Section 4 shows that this model can generate a sizeable equity
premium. Section 5 discusses how the equilibrium in our model can be obtained by traders individually optimizing subject
to constraints on asset trade both in their specialized market and in other markets. This section also explains how our
model relates to standard incomplete markets models. Section 6 extends our benchmark model by allowing for multiple
types of market segmentation and calculates the welfare costs of segmentation.2

2. Model

Market structure and endowments. The model is a variant on the pure endowment asset pricing models of Lucas (1978),
Breeden (1979) and Mehra and Prescott (1985). Time is discrete and denoted t 2 f0;1,2, . . .g. There are many distinct micro
asset markets indexed by m 2 ½0;1%. Each market m is specialized in trading a single type of durable asset with supply
normalized to one. Each period the asset produces a stochastic realization of a non-storable dividend ym,t 40. The
aggregate endowment available to the entire economy is yt :¼

R 1
0 ym,t dm. The aggregate endowment yt 40 follows an

exogenous stochastic process, described in detail below. Conditional on all realized aggregate variables, the endowments
ym,t are independently and identically distributed (IID) across markets.

Preferences. We follow Lucas (1990) and use a representative family construct to provide consumption insurance
beyond our market-segmentation frictions. The single representative family, which is initially endowed with the entire
supply of assets, consists of many, identical, traders who are specialized in particular asset markets. The period utility for
the family is UðctÞ :¼

R 1
0 uðcm,tÞ dm, where u : Rþ-R is a standard increasing concave utility function. Intertemporal utility

for the family has the standard time- and state-separable form, E0½
P1

t ¼ 0 b
tUðctÞ%, with constant time discount factor b. The

crucial role of the representative family is to eliminate the wealth distribution across markets as an additional endogenous
state variable (see, e.g., Alvarez et al., 2002).

Segmentation frictions. We interpret the representative family as a partially integrated financial system. Each trader in
market m works at a specialized trading desk that deals in the asset specific to that market (Fig. 1 illustrates). Traders in
market m are assumed to bear an exogenous fraction lm 2 ½0;1% of the expense of trading in that market and in return
receive lm of the benefit. The remaining 1#lm of the expense and benefit of trading in that market is shared between
family members.

More precisely, given segmentation parameter lm, the period budget constraint facing a representative trader in market
m is

cm,tþlmpm,tsm,tþð1#lmÞpF
t,t rlmðpm,tþym,tÞsm,t#1þð1#lmÞðpF

t#1,tþyF
t Þ, ð1Þ

where pm,t is the ex-dividend price of a share in the asset in market m while sm,t represents share holdings in that asset.
Family accounting. As can be seen from the budget constraint (1), a trader in market m holds directly a number lmsm,t of

shares of asset m. The collection of remaining shares, ð1#lnÞsn,t for all n 2 ½0;1%, is collectively held by all family members
in a family portfolio. The expense and benefit of trading this family portfolio are divided among family members in a
manner summarized by the two terms ð1#lmÞpF

t,t and ð1#lmÞðpF
t#1,tþyF

t Þ in the budget constraint. Specifically, the term
ð1#lmÞpF

t,t on the left-hand side means that the trader in market m is asked to contribute 1#lm of the expense of acquiring
the family portfolio this period (ex-dividend). Symmetrically, the term ð1#lmÞðpF

t#1,tþyF
t Þ on the right-hand side means

that the trader receives 1#lm of the benefit from the family portfolio acquired last period (cum-dividend). Thus, a balanced
family budget requires that

Z 1

0
ð1#lmÞpF

t,t dm¼
Z 1

0
ð1#lnÞpn,tsn,t dn: ð2Þ

In words, the total value of all family members’ contributions to the family portfolio (the left-hand side) has to equal the
total asset value of the family portfolio (the right-hand side). Defining l :¼

R 1
0 lm dm, we can rewrite this accounting

identity as

pF
t,t ¼

Z 1

0

1#ln

1#l
pn,tsn,t dn: ð3Þ

2 Various extensions and further computational details are given in a Supplementary Appendix, Edmond and Weill (2012), available online from the
journal’s website.
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Similarly,
R 1

0 ð1#lmÞðpF
t#1,tþytÞ dm is equal to the cum-dividend value of the remaining shares brought into the period. This

yields

pF
t#1,tþyF

t ¼
Z 1

0

1#ln

1#l
ðpn,tþyn,tÞsn,t#1 dn: ð4Þ

2.1. Equilibrium

A price path is a sequence p¼ fptg
1
t ¼ 0, adapted to agents’ information. Each element of the sequence, pt : ½0;1%-Rþ , is a

measurable function mapping each asset m 2 ½0;1% into its time-t price, pm,t . Given a price path, the family maximizes its
intertemporal utility by choosing an adapted consumption and asset holding plan, ðc,sÞ ¼ fct ,stg1t ¼ 0, where ct : ½0;1%-Rþ

and st : ½0;1%-R are measurable functions specifying cm,t and sm,t in each asset market m 2 ½0;1%. The maximization is
subject to the collection of budget constraints (1), one for each m 2 ½0;1%, the accounting identities for the family portfolio,
(3) and (4), and takes as given the initial distribution of asset holdings, sm,#1 ¼ 1 for all m 2 ½0;1%.

An equilibrium of this economy is a consumption and asset holding plan, (c, s), and a price path, p, such that (i) (c, s)
solves the family’s problem given p, and (ii) asset markets clear, i.e., sm,t ¼ 1 for all m 2 ½0;1% and t 2 f0;1,2, . . .g.

Equilibrium allocation. Before solving for asset prices, we provide the equilibrium allocation of consumption across
markets. Substituting the accounting identities (3) and (4) into the budget constraint (1) and imposing the equilibrium
condition sm,t ¼ 1 gives

cm,t ¼ lmym,tþð1#lmÞ
Z 1

0

1#ln

1#l
yn,t dn: ð5Þ

Since the realized idiosyncratic yn,t are independent of ln, an application of the law of large numbers then gives

cm,t ¼ lmym,tþð1#lmÞyt : ð6Þ

Equilibrium consumption in market m is a weighted average of the idiosyncratic and aggregate endowments with weights
reflecting the degree of market segmentation. The parameter lm represents the extent to which traders are not fully
diversified and hence determines the degree of risk sharing in the economy. If lm ¼ 0, traders are fully diversified and will
have consumption equal to the aggregate endowment, cm,t ¼ yt . But if lm ¼ 1, traders are not at all diversified and simply
consume the dividends realized in their specific market, cm,t ¼ ym,t .

2.2. Asset pricing

Asset prices are obtained using the first-order conditions for the family’s problem. Let mm,t Z0 denote the Lagrange
multiplier on (1), the constraint for market m at time t. As shown in Appendix A, the family’s Lagrangian can be written as

L¼ E0

X1

t ¼ 0

bt
Z 1

0
ðuðcm,tÞþqm,tðpm,tþym,tÞsm,t#1#qm,tpm,tsm,t#mm,tcm,tÞ dm

" #

, ð7Þ

Fig. 1. Segmentation frictions. There are many markets m 2 ½0;1%. Traders at each market bear fraction lm of the expense of their trades and share the
remaining fraction 1#lm of the expense with all other traders through a family portfolio.
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where

qm,t :¼ lmmm,tþð1#lmÞ
Z 1

0

1#ln

1#l
mn,t dn ð8Þ

is a weighted average of the Lagrange multipliers in market m and the multipliers for other markets with weights
reflecting the various degrees of market segmentation. More specifically, qm,t is the marginal value to the family of earning
one (real) dollar in market m. The first term in (8) arises because a fraction lm goes to the local trader, with marginal utility
mm,t . The second term arises because the remaining fraction is shared among other family members, with marginal utility
mn,t , according to their relative contributions ð1#lnÞ=ð1#lÞ to the family portfolio. We refer to qm,t as the state price of
earning one real dollar in market m.

Just as equilibrium consumption in market m is a weighted average of the idiosyncratic or ‘‘local’’ endowment and
aggregate endowment with weights lm and 1#lm, so too the state price for market m is a weighted average of the
idiosyncratic multiplier and an aggregate multiplier with the same weights. To highlight this, define

qt :¼
Z 1

0

1#ln

1#l
mn,t dn, ð9Þ

so that the market-specific state price can be written as qm,t ¼ lmmm,tþð1#lmÞqt . If any particular market m has lm ¼ 0
then the state price in that market is equal to the aggregate state price qm,t ¼ qt and is independent of the local endowment
realization. If the segmentation parameter is common across markets, lm ¼ l all m, then qt is the cross-sectional average
marginal utility and qt ¼

R 1
0 qm,t dm. More generally, qt is not a simple average over mm,t since different markets have

different relative contributions ð1#lmÞ=ð1#lÞ to the family portfolio.
The first-order conditions for the family are straightforward. For each cm,t we have u0ðcm,tÞ ¼ mm,t . Taking derivatives

with respect to sm,t then gives the Euler equation

pm,t ¼ Et b
qm,tþ1

qm,t
ðpm,tþ1þym,tþ1Þ

! "
, ð10Þ

where the expectation is conditional on the family’s information at time t. This is a standard equation, familiar from Lucas
(1978), with the crucial distinction being that the stochastic discount factor (SDF), bqm,tþ1=qm,t , is market-specific.

Combining the formulas for equilibrium consumption (6), market-specific state prices (8), and the pricing equation (10)
provides a mapping from the primitives of the economy (the lm, ym,t , etc.) into equilibrium asset prices. The standard Lucas
(1978) asset prices are obtained in the further special case lm ¼ 0 all m, so that cm,t ¼ yt all m and mm,t ¼ u0ðytÞ all m and
qt ¼

R 1
0 u0ðytÞ dn¼ u0ðytÞ.

2.3. Shadow prices of risk-free bonds

To simplify the presentation of the model, we have not explicitly introduced risk-free assets. But ‘‘shadow’’ bond prices
can be computed under the following convention. Let pk,t denote the price at time t of a zero-coupon bond that pays one
unit of the consumption good for sure at time tþkZ1, and that is held in the family portfolio. As shown in Appendix A,
these bonds would have price

pk,t ¼ Et b
qtþ1

qt
pk#1,tþ1

! "
, ð11Þ

with p0,t :¼ 1. Bonds are priced by the aggregate state price qt. The one-period shadow gross risk-free rate is
Rf ,t :¼ 1=p1,t ¼ 1=Et ½bqtþ1=qt%. Although the SDF for bonds bqtþ1=qt does not depend on any particular idiosyncratic
endowment realization, it does depend on the distribution of idiosyncratic endowments and in general is not
Lucas–Breeden SDF.

3. Calibration

Let the period utility u(c) be constant relative risk aversion (CRRA) with coefficient g40 so that u0ðcÞ ¼ c#g. Let the log
aggregate endowment be a random walk with drift, log gtþ1 :¼ log ðytþ1=ytÞ ¼ log gþEg,tþ1, where the innovations Eg,tþ1

are IID normal with mean zero and variance s2
Eg . Log market-specific endowments are the log aggregate endowment plus

an idiosyncratic term, log ym,t :¼ log ytþ log ŷm,t , so that market-specific endowments inherit the trend in the aggregate
endowment. The log idiosyncratic endowment, log ŷm,t , is conditionally IID normal in the cross-section with mean #s2

t =2
and variance s2

t where st follows a stochastic process specified below. The mean is chosen so that the average in levels is
normalized to one, i.e.,

R 1
0 ŷm,t dm¼ 1.

Idiosyncratic endowment volatility. The cross-sectional standard deviation of the idiosyncratic endowment, st , is an
AR(1) process in logs

log stþ1 ¼ ð1#fÞlog sþf log stþEv,tþ1, Ev,tþ1 ( IID and Nð0,s2
EvÞ, s40: ð12Þ
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For short, we refer to st as idiosyncratic endowment volatility, but note that st itself is an aggregate state variable. At any
point in time, the idiosyncratic endowment volatility st is the same in all markets m. In a frictionless model (lm ¼ 0 all m),
all idiosyncratic risk would be diversified away so that asset prices would be independent of the aggregate state st . In
other words, despite aggregate fluctuations in the level of idiosyncratic endowment volatility st , the level of st would not
be a priced factor. With segmentation frictions (lm40), by contrast, both the level and dynamics of st will affect asset
prices.

3.1. Solving the quantitative model

Using Eq. (6), equilibrium consumption in market m can be written as the product of the aggregate endowment yt and
an idiosyncratic component that depends only on the local idiosyncratic endowment ŷm,t and the amount of segmentation

cm,t ¼ ½1þlmðŷm,t#1Þ%yt : ð13Þ

Similarly, using this expression for consumption and the fact that utility is CRRA allows us to rewrite the local state price
from (8) as qm,t ¼ ym,ty

#g
t where

ym,t :¼ lm½1þlmðŷm,t#1Þ%#gþð1#lmÞ
Z 1

0

1#ln

1#l
½1þlnðŷn,t#1Þ%#g dn: ð14Þ

The SDF for market m is then bqm,tþ1=qm,t ¼ bg#gtþ1ym,tþ1=ym,t . As in Campbell and Cochrane (1999) and in recent papers by
Lustig and Van Nieuwerburgh (2005), Piazzesi et al. (2007), Kocherlakota and Pistaferri (2009) and Chien and Lustig
(2010), amongst others, the SDF can be written as the product of the usual Lucas–Breden aggregate SDF bg#gtþ1 with a
multiplicative ‘‘twisting’’ factor ym,tþ1=ym,t . Unlike these papers, however, the twisting factor in our model is market-
specific. The twisting factor varies over time both because of fluctuations in the local endowment ŷm,t and also because of
aggregate fluctuations in the cross-sectional distribution of endowments, as determined by the volatility factor st . Appendix
E discusses the properties of the twisting factor in further detail.

To solve the model in stationary variables, let p̂m,t :¼ pm,t=yt denote the price-to-aggregate-dividend ratio for market m.
Dividing both sides of Eq. (10) by yt 40 and using gtþ1 :¼ ytþ1=yt this ratio solves the Euler equation

p̂m,t ¼ Et bg1#g
tþ1

ym,tþ1

ym,t
ðp̂m,tþ1þ ŷm,tþ1Þ

! "
, ð15Þ

which is the standard CRRA equation except for the twisting factor ym,tþ1=ym,t . This is a linear integral equation to be
solved for the unknown function mapping the state into the price/dividend ratio. As detailed in Appendix B, we solve this
integral equation numerically using the methods of Tauchen and Hussey (1991).

3.2. Calibration strategy

The model is calibrated to monthly postwar data. The aggregate endowment is interpreted as per capita real personal
consumption expenditure on nondurables and services with g ¼ ð1:02Þ1=12 set to match an annual 2% growth rate and
sEg ¼ 0:01=

ffiffiffiffiffiffi
12
p

set to match an annual 1% standard deviation. The discount factor is set to b¼ ð0:99Þ1=12 to reflect an
annual pure rate of time preference of 1% and the coefficient of relative risk aversion is set to g¼ 4.

For our benchmark calibration we assume that all markets in the economy share the same segmentation parameter, l.
Given the values for preference parameters b,g and the aggregate endowment growth process g ,sEg above, values still need
to be assigned to this single l and the three parameters of the cross-sectional endowment volatility process s,f,sEv.

3.3. Calibrating the idiosyncratic volatility process

The crucial consequence of market segmentation is that local traders are forced to bear some idiosyncratic risk. Thus, to
explain the impact of market segmentation on risk premia, it is important that our model generates realistic levels of
idiosyncratic risk. This leads us to choose the parameters of the stochastic process for idiosyncratic endowment volatility
in order to match key features of the volatility of a typical stock return. To see why there is a natural mapping between the
two volatilities, observe that the gross return on a stock can be written as Rm,t ¼ gtðŷm,tþ p̂m,tÞ=p̂m,t#1. Thus, the volatility of
ŷm,t directly affects stock returns through the dividend term of the numerator. It also indirectly affects stock returns
through the asset price, p̂m,t .

Our statistics on stock return volatility draw on Goyal and Santa-Clara (2003). Their measure of monthly stock volatility
is obtained by adding up the cross-sectional stock return dispersion over each day of the previous month. Fig. 2 shows the
monthly time series of their measure of the cross-sectional standard deviation of stock returns, as updated by Bali et al.
(2005).

The idiosyncratic endowment volatility process is chosen so that our model replicates three key features of this stock
return volatility data, namely: (i) the unconditional average return volatility of 16.4% monthly, (ii) the unconditional
standard deviation of return volatility 4.17% monthly, and (iii) the AR(1) coefficient of return volatility 0.84 monthly.

C. Edmond, P.-O. Weill / Journal of Monetary Economics 59 (2012) 319–335324
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These three features are replicated by simultaneously choosing the three parameters governing the stochastic process for
endowment volatility: the unconditional average s, the innovation standard deviation sEv, and the AR(1) coefficient f.

3.4. Calibrating the segmentation parameter

The segmentation parameter l governs the extent to which local traders can diversify away the return volatility of their
local asset. Thus, l determines the extent to which the volatility factor, st , has an impact on asset prices and creates
systematic variation in asset returns. This leads us to identify l using a measure of systematic volatility, specifically the
4.16% monthly standard deviation of the real value-weighted return of NYSE stocks from CRSP.

To understand how the identification works, recall first what would happen in the absence of market segmentation,
l¼ 0. Then, we would be back in Mehra and Prescott model with IID lognormal aggregate endowment growth. As is well
known, this model cannot generate realistic amounts of systematic volatility. Specifically, with l¼ 0 the return from a
diversified market portfolio is gtð1þpÞ=p where p ¼ bE½g1#g%=ð1#bE½g1#g%Þ is the constant price/dividend ratio for the
aggregate market. With our standard parameterization of the preference parameters and aggregate endowment growth,
ð1þpÞ=p ) 1:0058 so that the monthly standard deviation of the diversified market portfolio return is approximately the
same as the monthly standard deviation of aggregate endowment growth, 0.29% monthly as opposed to 4.16% monthly in
the data.

By contrast, with segmentation frictions (l40), idiosyncratic endowment volatility creates systematic volatility.
Indeed, because of persistence, high idiosyncratic endowment volatility this month predicts high idiosyncratic endowment
volatility next month. Thus in every market m local traders expect to bear more idiosyncratic risk, and, because of risk
aversion, the price/dividend ratio p̂m,t ¼ pm,t=yt has to go down everywhere. Because this effect impacts all stocks at the
same time, it endogenously creates systematic return volatility. Clearly, the effect is larger if markets are more segmented
and traders are forced to bear more idiosyncratic risk. A larger l will thus result in a larger increase in systematic volatility.

3.5. Calibration results

The calibrated parameters are listed in Table 1. In our benchmark calibration, the level of l is 0.31. That is, 31% of
idiosyncratic endowment risk is non-tradeable. In terms of portfolio weights, l¼ 0:31 also implies that, in a typical market
m, a trader invests approximately 31% of his wealth in the local asset and the rest in the family portfolio. Table 2 shows
that, with these parameters, the benchmark model matches the target moments exactly.

4. Quantitative examples

Let the gross market return be RM,tþ1 :¼ ðptþ1þytþ1Þ=pt where pt :¼
R 1

0 pm,t dm is the ex-dividend value of the market
portfolio, yt is the aggregate endowment, and pt=yt is the price/dividend ratio of the market. The shadow gross one period

Fig. 2. Cross-sectional standard deviation of stock returns. Cross-sectional standard deviation of CRSP stock returns, monthly (1963:1–2001:12), from
Goyal and Santa-Clara (2003) as updated by Bali et al. (2005). Hodrick–Prescott filtered with smoothing parameter 1600* 34, as recommended by Ravn
and Uhlig (2002) for monthly data. NBER recession dates shaded.
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risk free rate is Rf ,t :¼ Et ½bqtþ1=qt%
#1 where qt is the aggregate state price that determines the price of risk free bonds, as in

(11). Implicitly, bonds are priced as if they trade in their own frictionless ‘‘l¼ 0’’ market, but the pricing of such bonds
takes into account l40 in other asset markets. The unconditional equity risk premium is calculated as E½RM,tþ1#Rf ,t %, and
similarly for other statistics.

Table 3 shows our model’s implications for aggregate returns and price/dividend ratios. The table reports annualized
monthly statistics from the model and compares these to annualized monthly returns and to annual price/dividend ratios
(annual data for price/dividends are used because of the pronounced seasonality in dividends at the monthly frequency).

4.1. Equity premium

The benchmark model produces an annual equity risk premium of 2.4% annual as opposed to about 5.4% annual in our
sample. Clearly this is a much larger equity premium than is produced by a standard Lucas/Mehra and Prescott model. For
comparison, that model with risk aversion g¼ 4 and IID consumption growth with annual standard deviation of 1%
produces an annual equity premium of about 0.04%.

Why is there a large equity premium? Relative to standard consumption-based asset pricing models with time-separable
expected utility preferences, our model delivers a large equity premium. Is this a direct consequence our strategy of
picking l in order to match systematic return volatility? No. Model risk premia are generated by covariances: no matter

Table 1
Parameter choices.

Panel A: Preferences and aggregate endowment growth
Parameter Monthly value Notes

b 0.999 Or 1.004 when calibrated, as below
g 4 Coefficient relative risk aversion
g 1.002 Average aggregate growth 2% annual
sEg 0.003 Std dev aggregate growth 1% annual

Panel B: Segmentation and idiosyncratic endowment volatility
Model

Parameter Benchmark Constant Feedback b41 Data moment

l 0.310 0.310 0.310 0.312 Std dev diversified market portfolio return 4.16% Monthly
s 0.318 0.318 0.318 0.316 Average cross-section std dev returns 16.40% Monthly
sEv 0.207 0 0.207 0.205 Time-series std dev cross-section std dev returns 4.17% Monthly
f 0.784 0 0.785 0.790 AR(1) cross-section std dev returns 0.84 Monthly
Z n/a n/a 2.513 n/a Cross-section std dev returns on lagged growth #0.56 Monthly
b 0.999 0.999 0.999 1.004 Average risk-free rate 1.81% Annual

The top panel shows our parameters for preferences and aggregate endowment growth. The bottom panel shows our parameters for segmentation and
the idiosyncratic endowment volatility process st and the moments in Goyal and Santa-Clara (2003) cross-sectional standard deviation of stock returns
data that they are chosen to match. The Benchmark model has a single common segmentation parameter l and time-varying idiosyncratic endowment
volatility st . The Constant s model sets st ¼ s , i.e., to the Benchmark unconditional mean, for all t. The Feedback model has counter-cyclical endowment
volatility, with feedback from aggregate growth gt to volatility st governed by the elasticity Z. The b41 model chooses b to match the average risk
free rate. The Feedback and b41 models are re-calibrated, each using an additional moment (as shown) in addition to those moments used for the
Benchmark model. For all other cases, b has its benchmark value b¼ 0:999. See the main text for further details.

Table 2
Fit of calibrated models.

Model

Moment Data Benchmark Constant Feedback b41

Std dev diversified market portfolio return 4.16 4.16 1.01 4.16 4.16
Average cross-section std dev returns 16.40 16.40 16.03 16.35 16.40
Time-series std dev cross-section std dev returns 4.17 4.17 0 4.17 4.17
AR(1) cross-section std dev returns 0.84 0.84 n/a 0.84 0.84
Regression cross-section std dev returns on lagged growth #0.56 n/a n/a #0.56 n/a
Average risk-free rate (annual) 1.81 8.19 9.25 8.19 1.81

Our target moments in the US monthly postwar Goyal and Santa-Clara (2003) cross-sectional standard deviation of stock returns data and their model
counterparts. The Benchmark model has a single common segmentation parameter l and time-varying idiosyncratic endowment volatility st . The
Constant s model sets st ¼s , i.e., to the Benchmark unconditional mean, for all t. The Feedback model has counter-cyclical endowment volatility, with
feedback from aggregate growth gt to volatility st governed by the elasticity Z. The b41 model chooses b to match the average risk free rate. See the
main text for further details.
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how much return volatility is fed into a model, the equity risk premia will be zero if the model’s SDF is not negatively
correlated with return variation.

What, then, is the equity premium from the point of view of aggregate consumption? In our model, if we compute the
unconditional average equity premium using the model generated market returns and Lucas–Breeden SDF bg#gtþ1 instead of
the true model SDF, then the equity premium is on the order of 0.04% (four basis points) annual rather than the 2.4%
annual in the benchmark model. Hence, while aggregate consumption growth does not command a big risk premium, the
volatility factor does. To see this, consider the premium implied by the SDF bqtþ1=qt where qt is the aggregate state price
that determines the price of risk free bonds. In general this is given by Eq. (9) but with a single common l it reduces to
qt ¼

R 1
0 mm,t dm¼

R 1
0 c#gm,t dm, the cross-section average marginal utility. In our benchmark, this SDF implies a premium of

2.05% annual. This comes from the convexity of the marginal utility function: a high st makes consumption highly
dispersed across markets so that average marginal utilities are high. At the same time, a high st depresses asset prices in
every market, so that the return on the market portfolio is low.

4.2. Risk free rate and yield curve

The level of the risk-free rate is high, about 8.2% in the model as opposed to 1.8% in the data. As emphasized by Weil
(1989), this comes from the relationship between real interest rates and growth in a deterministic setting with expected
utility: high risk aversion means low intertemporal elasticity of substitution so that it takes high real interest rates to
compensate for high aggregate growth. With risk, there is an offsetting precautionary savings effect that could, in principle,
pull the risk-free rate back down to more realistic levels. But in our calibration this precautionary savings effect is small:
raising l from zero to l¼ 0:31 lowers the risk free rate by about 1% annual.

In the data, the risk-free rate is smooth and the volatility of the equity premium reflects the volatility of equity returns.
In the benchmark model, the risk free-rate is too volatile, about 5.6% annual as opposed to 1.2% annual in the data.

With IID lognormal aggregate growth and CRRA utility, the average yield curve in a standard asset pricing model is flat.
But our model generates an increasing and concave average yield curve (see Figure III in Supplementary Appendix). This
comes from the relationship between the aggregate state price qt and volatility st . Since st has positive serial correlation
but is not a random walk, its first difference is negatively serially correlated. This negative serial correlation is inherited by
the one-period bond pricing SDF bqtþ1=qt , and this implies that the average yield curve is increasing (Backus and Zin,
1994).

4.3. Price/dividend ratio

The benchmark model produces an annual price/dividend ratio of about 14 as opposed to an unconditional average of
more like 34 in our sample. Given the large, persistent, swings in the price/dividend ratio in the data, what constitutes
success on this dimension is not entirely clear. The model generates too little unconditional volatility in the log price/
dividend ratio, some 21% annual as opposed to 39% in the data. Also, the temporal composition of price/dividend volatility
differs somewhat between the model and data. The unconditional volatility of the price/dividend ratio in the data comes
from large, low-frequency movements whereas in the model it comes from high-frequency movements.

Table 3
Aggregate asset pricing implications of single l model.

Model

Moment Data Benchmark Constant Feedback b41

Equity premium E½RM#Rf % 5.43 2.43 0.22 2.43 2.12

Std½RM#Rf % 14.25 13.27 1.01 13.27 13.34

Sharpe ratio E½RM#Rf %=Std½RM#Rf % 0.38 0.17 0.20 0.17 0.16

Market return E½RM % 7.24 10.62 9.47 10.62 3.93
Std½RM % 14.44 14.41 1.01 14.41 14.41

Risk free rate E½Rf % 1.81 8.19 9.25 8.19 1.81

Std½Rf % 1.20 5.55 0 5.57 5.41

Price/dividend ratio E½p=y% (annual) 34.38 14.10 14.13 14.10 118.97
Std½logðp=yÞ% (annual) 38.63 20.56 0 20.56 20.90
Auto½logðp=yÞ% (monthly) 0.99 0.76 n/a 0.76 0.77

Aggregate asset pricing moments in postwar US data. All return data is monthly 1959:1–2007:12 and reported in annualized percent. The stock market
index is the value weighted NYSE return from CRSP, and the risk-free return is the 90 day T-bill rate. We obtain real returns after deflating by the CPI from
the BLS. Data on price/dividend ratios is annual 1959–2007. To annualize monthly returns we multiply by 12 and to annualize monthly standard
deviations we multiply by

ffiffiffiffiffiffi
12
p

.
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4.4. Time variation in expected returns

In a frictionless (l¼ 0) version of our model, all idiosyncratic risk would be diversified and time-variation in the
volatility factor st would be irrelevant for asset prices. Since aggregate endowment growth is IID, in that frictionless world,
the market price/dividend ratio would be constant as would expected returns and excess returns. Realized returns would
inherit the IID property of aggregate endowment growth. In our benchmark model with l40, however, the volatility
factor st is priced. And, since st is persistent, fluctuations in st lead to fluctuations in expected returns and return
volatility.

In particular, Fig. 3 shows the expected market return, the risk-free rate and risk premium as a function of st . Except for
very low values of st , the expected return and risk-free rate are increasing in st , thus the expected return is relatively high
in ‘‘bad’’ aggregate states and relatively low in ‘‘good’’ aggregate states. In this sense, expected returns are countercyclical.
However, the risk-free rate is just as cyclical as the market return so that the risk premium is almost a-cyclical. The
aggregate market risk premium is significantly countercyclical only for very high values of st , values far above the
unconditional mean. Appendix D provides further details.

4.5. Further discussion

Constant endowment volatility. Our benchmark model has two departures from a standard consumption-based asset
pricing model: (i) segmentation, and (ii) time-varying endowment volatility. To show that both these departures are
essential for our results, we solve our model with constant endowment volatility, i.e., st ¼ s for all t. For this exercise, we
fix the volatility at the same level as the unconditional average from the benchmark model s ¼ 0:32 and keep the level of
segmentation at the benchmark l¼ 0:31. Table 2 shows that this version of the model produces essentially the same
amount of unconditional cross-sectional stock return volatility as in the data but produces relatively little systematic stock
volatility. In particular, systematic stock volatility is only about 1% monthly as opposed to 4% in the data. And recall that,
for our preference and aggregate growth parameters, a standard model would imply negligible systematic stock volatility.
Thus l40 is necessary but not sufficient for our model to create systematic stock volatility from idiosyncratic endowment
volatility.

Countercyclical endowment volatility. Measures of cross-sectional idiosyncratic risk increase in recessions (Campbell
et al., 2001; Storesletten et al., 2004, for example). This cyclicality is also a feature of the cross-sectional standard deviation
of returns data from Goyal and Santa-Clara (2003). However, in the benchmark model the stochastic process for the cross-
sectional volatility evolves independently of aggregate growth. To see if our results are sensitive to this, we modify the
stochastic process in (12) to

log stþ1 ¼ ð1#fÞlog sþf log st#Zðlog gt#log g ÞþEv,tþ1, ð16Þ

with Ev,tþ1 IID normal, as before. If Z40, then aggregate growth below trend in period t increases the likelihood that
volatility is above trend in period tþ1. The new parameter Z is identified by requiring that, in a monthly regression of the
cross-section standard deviation of stock returns on lagged aggregate growth, the regression coefficient is #0.56, as it is in
the data. The calibrated parameters for this version of the model are shown in Table 1. The elasticity Z is 2.5 so aggregate

Fig. 3. Conditional returns. The expected market return, risk free rate, and expected excess return (risk premium) as a function of the volatility state st ,
all expressed in annual terms. The aggregate endowment growth is fixed at is unconditional mean. The vertical dashed line is the unconditional mean s .
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growth 1% below trend tends to increase endowment volatility by 2.5%. The other calibrated parameters are
indistinguishable from their benchmark values. The model’s implications for asset prices are also very close to the results
for the benchmark model. Thus, while the model can be reconciled with the countercyclical behavior of cross-sectional
stock volatility, this feature is not necessary for our main results.

Alternative calibration with b41. The level of the risk free rate in our model can be reduced by allowing a pure time
discount factor b41. As emphasized by Kocherlakota (1990), since the growth-adjusted discount factor is bg1#g, for g41 a
value of b41 can still be consistent with finite expected utility. Table 1 presents a version of our model choosing a value of
b to match the level of the risk-free rate, with other parameters chosen to match the same moments as before. This gives
b¼ 1:0042 monthly so that the annual growth-adjusted discount factor is approximately 0.99 and the model risk-free rate
is 1.81% annual, on average. The other calibrated values are essentially unchanged and the model’s ability to match the
target moments is not compromised by the need to also match the risk-free rate. While the model with b41 is able to
deliver a lower risk-free rate than our benchmark model, it dramatically increases the average market price/dividend ratio.

5. Individual optimality and trading constraints

In our model, individual traders do not optimize. Instead, the family optimizes on their behalf. In this section we
explain two implementation schemes such that the trades dictated by the family are individually optimal. The first
implementation uses portfolio constraints: an individual trader is constrained to a minimum asset holding if her private
valuation of an asset is lower than the market price, and vice versa if her private valuation is higher. The second
implementation does the same thing, but using taxes and subsidies.

5.1. Implementation with portfolio constraints

Let Vm,t denote the equilibrium private valuation of trader m for the asset in that local market and let VF
m,t denote their

equilibrium private valuation for the family portfolio. These are given by

Vm,t :¼ Et b
u0ðcm,tþ1Þ

u0ðcm,tÞ
ðpm,tþ1þym,tþ1Þ

! "
, ð17Þ

VF
m,t :¼ Et bu0ðcm,tþ1Þ

u0ðcm,tÞ
ðpF

t,tþ1þyF
tþ1Þ

! "
, ð18Þ

where cm,t denotes the consumption of trader m, pm,t the price of asset m, and pF
t,t the price of the family portfolio in the

equilibrium corresponding to the family problem.
With these definitions in mind, we reverse-engineer a simple set of portfolio constraints which make the trades

dictated by the family also individually optimal. Consider, for simplicity, the case when lm ¼ l for all m and suppose that
an individual trader can trade his local asset and the family portfolio. Then the trader’s sequential budget constraint is

cm,tþpm,tsm,tþpF
t,ts

F
m,t r ðpm,tþym,tÞsm,t#1þðpF

t#1,tþyF
t Þs

F
m,t#1: ð19Þ

Now assume that the trader faces the following constraints on the quantities of her asset holdings

sm,t Zl if Vm,t rpm,t and sm,t rl if Vm,t Zpm,t ,

sF
m,t Z1#l if VF

m,t rpF
t,t and sF

m,t r1#l if VF
m,t ZpF

t,t : ð20Þ

for the local asset and for the family portfolio, respectively. One can immediately verify that the trader’s allocation in the
family equilibrium solves the problem of an individual trader when faced with these portfolio constraints. The constraints
are intuitive. When the private valuation of the trader is below the market price, then the trader wants to lower her
holding below l, and so, to implement the family equilibrium, the trader needs to be confronted with the constraint that
sm,t Zl. The opposite is true when the trader’s private valuation is above the market price.

Panel A of Fig. 4 illustrates this pattern of binding constraints using our benchmark calibration. Consider for instance
the left-side of the graph, when the local endowment realization, ym,t , is low. Then consumption cm,t ¼ lym,tþð1#lÞyt

is low as well, implying that the marginal utility of the local trader, mm,t , is high relative to that of the family,
qm,t ¼ lmm,tþð1#lÞ

R 1
0 mn,t dn. As shown in the figure, this means that the local trader has a low private valuation for assets.

The portfolio constraint thus prescribes that they should hold a minimum position. The opposite is true when the local
endowment realization is high.

5.2. Implementation with taxes and subsidies

The family’s trades can also be implemented using taxes and subsidies. The main idea is simply to tax the local trader’s
asset purchases when their private valuation is high relative to that of the family and to subsidize their purchases when
their private valuation is low. Specifically, consider a scheme offering to pay tm,t ¼ 1#Vm,t=pm,t per real dollar invested in
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Fig. 4. Implementation of family trades. Panel A: Implementation with portfolio constraints. The market price and trader’s private valuation for the local
asset and for the family portfolio as a function of the local endowment ŷm,t ¼ ym,t=yt , all expressed in annual terms. The aggregate endowment growth
and volatility are kept fixed at their unconditional means. Panel B: Implementation with taxes/subsidies. The tax/subsidy for the local asset tm,t and for the
family portfolio tF

m,t , both as a function of the local endowment ŷm,t ¼ ym,t=yt . The aggregate endowment growth and volatility are kept fixed at their
unconditional means.
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the local asset and tF
m,t ¼ 1#VF

m,t=pF
t,t per real dollar invested in the family portfolio (if positive, tm,t is a subsidy, if negative

it is a tax). Panel B of Fig. 4 illustrates the subsidies and taxes using our benchmark calibration.

5.3. Importance of constraining trade in all assets

To implement the family equilibrium, typically there need to be constraints not only on trades in local assets but also
on trades in other markets. Moreover, these constraints may prescribe either minimum or maximum holdings.

To highlight the importance of imposing constraints on both kinds of assets, Appendix C studies a version of our model
with only constraints on local asset trades. Specifically, we consider an incomplete markets version of our model in which
aggregate consumption growth and idiosyncratic dividends are independent and IID. Each trader m 2 ½0;1% is constrained
to hold at least l shares of the asset traded in their local market, but faces no constraints on their holdings of assets traded
in other markets. Under this portfolio constraint, the model becomes essentially equivalent to the incomplete markets
model of Krueger and Lustig (2010), whose predictions are markedly different from those of the segmented markets
model. In particular, all local assets are sold at the same ex-dividend price. This happens because trader m is in fact not
‘‘marginal’’ in their own market; because their portfolio constraint is binding they do not ‘‘price’’ asset m. Instead the local
asset ends up being priced by the traders operating in other markets nam. But these other traders do not care about the
idiosyncratic risk of market m. Since assets are symmetric, they end up with the same equilibrium price.

6. Cross-sectional volatilities

We now pursue the implications of the general model with market-specific lm and hence a non-degenerate cross-
section of volatility. Specifically, consider a finite number of market types. Each market contains the same number of assets,
but there is a total measure om of traders in market m with a supply per trader normalized to 1. With this notation, the
aggregate endowment is y¼

P
mymom.

6.1. Calibration strategy and results

In the single l benchmark, the value of l was identified by matching a measure of systematic volatility, the return
volatility of a well-diversified portfolio of stocks. Now a vector of segmentation parameters needs to be identified and this
is achieved using a closely related strategy. In particular, market types are identified with quintile portfolios of stocks
sorted on measures of idiosyncratic volatility. The value of lm for m¼ 1, . . . ,5 is chosen to match the total volatility of the
mth quintile portfolio as calculated by Ang et al. (2006). Similarly, the values of om are chosen so that the average portfolio
weight of the family in assets of market m matches the average market share for the mth quintile portfolio. Our procedure
chooses these parameters simultaneously with the parameters of the stochastic process for cross-sectional endowment
volatility. The values of the preference parameters and the aggregate growth parameters are kept at their benchmark
values.

The calibrated parameters from this procedure are listed in Table 4. Market 1, with the lowest idiosyncratic volatility,
has a segmentation parameter of only l1 ¼ 0:01. This market consists of 20% of assets by number but it accounts for 51% of
total market value. By contrast, market 5 has segmentation parameter l5 ¼ 0:37 but accounts for only 2% of total market
value. Across markets the segmentation parameters lm are monotonically increasing in m while the weights om are
monotonically decreasing in m. Averaging over the five markets l ¼

P
mlmom ¼ 0:115. Thus this economy, which matches

the same aggregate moments as the benchmark model, hits its targets with an average amount of segmentation l ¼ 0:115
roughly one-third that of the single parameter benchmark l¼ 0:31. This suggests that there may be a significant bias when
aggregating a collection of heterogeneously segmented markets into a ‘‘representative’’ segmented market.

6.2. Asset pricing implications

Table 5 shows the risk premia for each market type in the model and their empirical counterparts. In the data, the
premium for the low volatility market 1 is 0.53% monthly (roughly 6.5% annual) whereas in the model it is 0.17% monthly.
For markets with higher volatility, the model predicts that risk premia monotonically increase, reaching 0.53% monthly for
market 5. However, the data exhibits a hump-shaped pattern for the cross-section of premia, reaching a maximum at about
0.69% monthly for market 3, then falling to #0.53% for the most volatile market 5. Thus the model does not account for the
negative risk premia of the smallest, highest idiosyncratic volatility, markets.

Table 5 also shows the aggregate asset pricing implications of the model with market-specific lm. The aggregate equity
premium is 2.9%, about 0.50% higher than in the benchmark single l model, despite the fact that the average segmentation
here is only l ¼ 0:115, one-third the single l benchmark. For comparison, the table shows the asset pricing implications for
an otherwise identical single l economy with l¼ l ¼ 0:115. The aggregation of the micro-segmentation frictions across
the different markets adds some 1.2% annual to the equity premium, taking it from 1.7% to 2.9%.
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6.3. Welfare costs of market segmentation

We measure the welfare costs of segmentation as the percentage increase in lifetime consumption required to make the
family indifferent between living with a given amount of market segmentation or eliminating that segmentation entirely
(the same way that Lucas, 1987, measures the welfare costs of business cycles).

Table 4
Market-specific segmentation: parameters and fit.

Panel A: Segmentation parameters
Moment

Parameter Portfolio std dev Market share

Market m lm om Data Model Data Model

1 0.010 0.514 3.83 4.18 0.535 0.538
2 0.178 0.277 4.74 4.52 0.274 0.272
3 0.264 0.128 5.85 5.72 0.119 0.118
4 0.324 0.058 7.13 7.02 0.052 0.052
5 0.365 0.023 8.16 8.08 0.020 0.020

Average 0.115

Panel B: Idiosyncratic endowment volatility

Parameter Moment Data Model

s 0.816 Average cross-section std dev returns 16.40 16.46
sEv 0.198 Time-series std dev cross-section std dev returns 4.17 4.18
f 0.891 AR(1) cross-section std dev returns 0.84 0.85

The top panel shows the five segmentation parameters lm and measures of traders om , for m¼ 1, . . .5, and the portfolio standard deviation and market
share moments in Ang et al. (2006) data they are chosen to match. The bottom panel shows the idiosyncratic endowment volatility process parameters
and the moments in Goyal and Santa-Clara (2003) cross-sectional standard deviation of stock returns data they are chosen to match.

Table 5
Asset pricing implications of market-specific segmentation.

Panel A: Market-specific asset pricing implications
Risk premia

Market m Data Model

1 0.53 0.17
2 0.65 0.23
3 0.69 0.33
4 0.36 0.44
5 #0.53 0.53

Panel B: Aggregate asset pricing implications
Model

Moment Data lm l

Equity premium E½RM#Rf % 5.27 2.92 1.69

Std½RM#Rf % 14.25 15.54 11.11

Sharpe ratio E½RM#Rf %=Std½RM#Rf % 0.38 0.17 0.14

Market return E½RM % 7.24 11.07 10.27
Std½RM % 14.44 16.16 11.56

Risk free rate E½Rf % 1.81 8.15 8.58

Std½Rf % 1.20 3.65 2.92

Price/dividend ratio E½p=y% (annual) 34.38 13.90 14.04
Std½logðp=yÞ% (annual) 38.63 32.84 23.22
Auto½logðp=yÞ% (monthly) 0.99 0.88 0.88

The top panel shows the market risk premia implied by the five markets m¼ 1, . . .5 and their counterparts in Ang et al. (2006) data. These are reported as
monthly percent. The bottom panel shows the aggregate asset pricing implications. The column marked lm refers to the model with market-specific
segmentation parameters while the column marked l refers to a model with a single segmentation parameter l that is set equal to the mean
l ¼

P
mlmom of the market-specific lm model.
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For the single l benchmark the welfare cost of segmentation is 2.2% of lifetime consumption. Fluctuations in st account
for a small yet economically significant share of this cost. If the calculation is repeated with st ¼ s, then the cost of
segmentation drops to 1.85% of lifetime consumption. Fig. 5 shows the cost of segmentation as a function of the
segmentation parameter l. The cost of segmentation is increasing and convex in l; traders find it increasingly costly to bear
more idiosyncratic volatility. This suggests that, in a multiple asset model, the average level of segmentation is likely to
underestimate the true economic cost of segmentation.

Fig. 5. Welfare costs of segmentation. Panel A: Single segmentation parameter l. For our benchmark calibration with l¼ 0:31, the welfare cost of
segmentation is 2.2% of lifetime consumption. Time-varying volatility accounts for a small but economically significant share of this cost. If st is constant,
the cost of segmentation drops to 1.85% of lifetime consumption. Panel B: Market-specific segmentation parameters lm. The welfare cost of segmentation in
each market with and without time-varying volatility. The average welfare cost of segmentation is 3% of lifetime consumption, higher than in the single
l¼ 0:31 benchmark, despite the average segmentation l ¼ 0:11 being only one-third as high.
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Indeed, for the multiple lm economy the welfare cost is 3% of lifetime consumption, considerably larger than the 2.2%
for the single l economy. The welfare cost is higher than in the single l case because of two effects. First, the level of
volatility is larger in the multiple lm calibration than in the single l calibration. This increases the cost of segmentation
for any l. Second, the cost is a convex function of lm so that Jensen’s inequality implies that increased dispersion in
segmentation raises the welfare cost. Appendix F provides more detail on these calculations.

7. Conclusion

To assess the aggregate implications of market-specific frictions, we develop a consumption-based asset pricing model
in which assets are traded in a financial system consisting of many segmented markets. Because of the segmentation, a
trader operating in one particular market cannot fully diversify the idiosyncratic risk specific to that market. Assets in each
micro market are priced by a convex combination of the individual marginal utility of traders specialized in that asset
(who bear some idiosyncratic risk), and the average marginal utility in the economy (reflecting diversification of the
remaining idiosyncratic risk in a large portfolio).

Our model implies that market-specific segmentation frictions can have significant implications for aggregate asset
prices. The amount of segmentation is calibrated to reproduce key facts on systematic and idiosyncratic return volatility
and the model then implies a sizeable aggregate equity premium and pronounced time-variation in expected returns. A
disaggregated version of the model that allows the amount of segmentation to differ across markets produces the same
aggregate asset pricing implications but with a much smaller average amount of segmentation. Moreover, despite having a
smaller average amount of segmentation, this disaggregated version of the model also implies a significantly larger welfare
cost of segmentation. In short, both the mean and the cross-sectional dispersion of the segmentation friction matter in the
aggregate.

Finally, our segmented markets model has markedly different asset pricing implications from those of an otherwise
similar incomplete markets model. Idiosyncratic risk leads to a significant aggregate risk premium in the segmented
markets model but has no such implications in the incomplete markets model.
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